Как устроен мозг человека. Из чего состоит мозг: строение Из какой ткани состоит мозг

Головной мозг - часть центральной нервной системы, которая состоит из органов, находящихся внутри черепной коробки и окруженных защитными мембранами, между которыми находится жидкость, предназначенная для амортизации при травмах; спинномозговая жидкость также циркулирует по желудочкам головного мозга. Человеческий мозг весит около 1300 г. По своему размеру и сложности эта структура не имеет равных в животном мире.


Мозг - самый важный орган нервной системы: в коре головного мозга , составляющей внешнюю поверхность мозга, в тонком слое серого вещества, состоящем из сотен миллионов нейронов, ощущения становятся осознанными, генерируется вся произвольная активность и происходят высшие ментальные процессы, такие как мышление, память и речь.


У мозга очень сложное строение, он включает в себя миллионы нейронов, чьи клеточные тела сгруппированы в нескольких отделах и составляют так называемое серое вещество, тогда как другие содержат только нервные нити, покрытые миелиновыми оболочками, и составляют белое вещество. Мозг состоит из симметричных половин, мозговых полушарий, разделенных длинной бороздой толщиной 3- 4 мм, внешняя поверхность которой соответствует слою серого вещества; кора головного мозга состоит из различных слоев тел нейронов.


  • коры головного мозга , самого объемного и важного органа, поскольку он контролирует всю сознательную и большую часть бессознательной деятельности тела, кроме того, он является местом, где протекают ментальные процессы, такие как память, мышление и т.д.;
  • мозговой ствол состоит из варолиева моста и продолговатого мозга, в мозговом стволе находятся центры, регулирующие жизненные функции, в основном мозговой ствол состоит из ядер нервных клеток, поэтому он серого цвета;
  • мозжечок принимает участие в контроле равновесия тела и координирует движения, осуществляемые телом.


НАРУЖНЫЙ СЛОЙ МОЗГА
Поверхность мозга очень бугристая, поскольку кора состоит из множества складок, образующих многочисленные изгибы. Некоторые из этих складок, самые глубокие, называются бороздами, которые разделяют каждое полушарие на четыре отдела, называемые долями; названия долей соответствуют названиям черепных костей, которые находятся над ними: лобные, височные, теменные, затылочные доли. Каждая доля, в свою очередь, пересечена менее глубокими складками, которые формируют продолговатые искривления, называемые извилинами.

ВНУТРЕННИЕ СЛОИ МОЗГА
Под корой головного мозга находится белое вещество, состоящее из аксонов нейронов, расположенных на коре, которое соединяет различные зоны в одно полушарие (объединяющие нити), группирует различные части головного мозга (проекционные нити), а также связывает два полушария между собой (шовные нити). Нити, соединяющие оба полушария, составляют толстую полосу белого вещества, называемую мозолистым телом.


В более глубокой части мозга также находятся нейронные тела, образующие серое вещество основы; в этой части мозга находятся таламус, хвостатое ядро, линзовидное ядро, состоящее из скорлупы и бледного ядра, или гипоталамус, под которым находится гипофиз. Эти ядра также разделены между собой прослойками белого вещества, среди них выделяется перепонка, называемая внешней капсулой, в которой находятся нервные нити, соединяющие кору головного мозга с таламусом, мозговым стволом и спинным мозгом .


Мозговые оболочки - это три мембраны, наложенные одна на другую и обволакивающие головной и спинной мозг, которые выполняют в основном защитную функцию: твердая мозговая оболочка, внешняя, самая прочная и толстая, находится в непосредственном контакте с внутренней поверхностью черепа и внутренними стенками позвоночного канала, в котором заключен спинной мозг; паутинная оболочка, средняя, - это тонкая эластичная оболочка, по структуре напоминающая паутину; и мягкая оболочка мозга - внутренняя мембрана, очень тонкая и нежная, прилегающая к головному и спинному мозгу.

Между различными мозговыми оболочками, так же как и между твердой мозговой оболочкой и костями черепа, остаются пространства, имеющие различные названия и характеристики: полупаутинное пространство, разделяющее паутинную оболочку и мягкую оболочку мозга, заполнено спинномозговой жидкостью; полутвердое пространство, расположенное между твердой мозговой оболочкой и паутинной; и эпидуральное пространство, расположенное между твердой мозговой оболочкой и костями черепа, заполненное кровеносными сосудами - венозными полостями, которые также расположены в секторе, где твердая мозговая оболочка разделяется, огибая две доли. Внутри венозной полости находятся ответвления паутинной оболочки, называемые гранулами, которые фильтруют спинномозговую жидкость.


Внутри головного мозга находятся различные полости, заполненные спинномозговой жидкостью и соединенные между собой тонкими протоками и отверстиями, что позволяет спинномозговой жидкости циркулировать: боковые желудочки расположены внутри мозговых полушарий; третий желудочек находится почти в центре мозга; четвертый расположен между мозговым стволом и мозжечком, соединен с третьим желудочком сильвиевой бороздой, а также с полупаутинным пространством, которое спускается вниз по центральному каналу спинного мозга - эпендиме.

Содержание статьи

орган, координирующий и регулирующий все жизненные функции организма и контролирующий поведение. Все наши мысли, чувства, ощущения, желания и движения связаны с работой мозга, и если он не функционирует, человек переходит в вегетативное состояние: утрачивается способность к каким-либо действиям, ощущениям или реакциям на внешние воздействия. Данная статья посвящена мозгу человека, более сложному и высокоорганизованному, чем мозг животных. Однако существует значительное сходство в устройстве мозга человека и других млекопитающих, как, впрочем, и большинства видов позвоночных.

Головной мозг – симметричная структура, как и большинство других частей тела. При рождении его вес составляет примерно 0,3 кг, тогда как у взрослого он – ок. 1,5 кг. При внешнем осмотре мозга внимание прежде всего привлекают два больших полушария, скрывающие под собой более глубинные образования. Поверхность полушарий покрыта бороздами и извилинами, увеличивающими поверхность коры (наружного слоя мозга). Сзади помещается мозжечок, поверхность которого более тонко изрезана. Ниже больших полушарий расположен ствол мозга, переходящий в спинной мозг. От ствола и спинного мозга отходят нервы, по которым к мозгу стекается информация от внутренних и наружных рецепторов, а в обратном направлении идут сигналы к мышцам и железам. От головного мозга отходят 12 пар черепно-мозговых нервов.

Внутри мозга различают серое вещество, состоящее преимущественно из тел нервных клеток и образующее кору, и белое вещество – нервные волокна, которые формируют проводящие пути (тракты), связывающие между собой различные отделы мозга, а также образуют нервы, выходящие за пределы ЦНС и идущие к различным органам.

Головной и спинной мозг защищены костными футлярами – черепом и позвоночником. Между веществом мозга и костными стенками располагаются три оболочки: наружная – твердая мозговая оболочка, внутренняя – мягкая, а между ними – тонкая паутинная оболочка. Пространство между оболочками заполнено спинномозговой (цереброспинальной) жидкостью, которая по составу сходна с плазмой крови, вырабатывается во внутримозговых полостях (желудочках мозга) и циркулирует в головном и спинном мозгу, снабжая его питательными веществами и другими необходимыми для жизнедеятельности факторами.

Кровоснабжение головного мозга обеспечивают в первую очередь сонные артерии; у основания мозга они разделяются на крупные ветви, идущие к различным его отделам. Хотя вес мозга составляет всего 2,5% веса тела, к нему постоянно, днем и ночью, поступает 20% циркулирующей в организме крови и соответственно кислорода. Энергетические запасы самого мозга крайне невелики, так что он чрезвычайно зависим от снабжения кислородом. Существуют защитные механизмы, способные поддержать мозговой кровоток в случае кровотечения или травмы. Особенностью мозгового кровообращения является также наличие т.н. гематоэнцефалического барьера. Он состоит из нескольких мембран, ограничивающих проницаемость сосудистых стенок и поступление многих соединений из крови в вещество мозга; таким образом, этот барьер выполняет защитные функции. Через него не проникают, например, многие лекарственные вещества.

КЛЕТКИ МОЗГА

Клетки ЦНС называются нейронами; их функция – обработка информации. В мозгу человека от 5 до 20 млрд. нейронов. В состав мозга входят также глиальные клетки, их примерно в 10 раз больше, чем нейронов. Глия заполняет пространство между нейронами, образуя несущий каркас нервной ткани, а также выполняет метаболические и другие функции.

Нейрон, как и все другие клетки, окружен полупроницаемой (плазматической) мембраной. От тела клетки отходят два типа отростков – дендриты и аксоны. У большинства нейронов много ветвящихся дендритов, но лишь один аксон. Дендриты обычно очень короткие, тогда как длина аксона колеблется от нескольких сантиметров до нескольких метров. Тело нейрона содержит ядро и другие органеллы, такие же, как и в других клетках тела (см. также КЛЕТКА).

Нервные импульсы.

Передача информации в мозгу, как и нервной системе в целом, осуществляется посредством нервных импульсов. Они распространяются в направлении от тела клетки к концевому отделу аксона, который может ветвиться, образуя множество окончаний, контактирующих с другими нейронами через узкую щель – синапс; передача импульсов через синапс опосредована химическими веществами – нейромедиаторами.

Нервный импульс обычно зарождается в дендритах – тонких ветвящихся отростках нейрона, специализирующихся на получении информации от других нейронов и передаче ее телу нейрона. На дендритах и, в меньшем числе, на теле клетки имеются тысячи синапсов; именно через синапсы аксон, несущий информацию от тела нейрона, передает ее дендритам других нейронов.

В окончании аксона, которое образует пресинаптическую часть синапса, содержатся маленькие пузырьки с нейромедиатором. Когда импульс достигает пресинаптической мембраны, нейромедиатор из пузырька высвобождается в синаптическую щель. Окончание аксона содержит только один тип нейромедиатора, часто в сочетании с одним или несколькими типами нейромодуляторов (см. ниже Нейрохимия мозга).

Нейромедиатор, выделившийся из пресинаптической мембраны аксона, связывается с рецепторами на дендритах постсинаптического нейрона. Мозг использует разнообразные нейромедиаторы, каждый из которых связывается со своим особым рецептором.

С рецепторами на дендритах соединены каналы в полупроницаемой постсинаптической мембране, которые контролируют движение ионов через мембрану. В покое нейрон обладает электрическим потенциалом в 70 милливольт (потенциал покоя), при этом внутренняя сторона мембраны заряжена отрицательно по отношению к наружной. Хотя существуют различные медиаторы, все они оказывают на постсинаптический нейрон либо возбуждающее, либо тормозное действие. Возбуждающее влияние реализуется через усиление потока определенных ионов, главным образом натрия и калия, через мембрану. В результате отрицательный заряд внутренней поверхности уменьшается – происходит деполяризация. Тормозное влияние осуществляется в основном через изменение потока калия и хлоридов, в результате отрицательный заряд внутренней поверхности становится больше, чем в покое, и происходит гиперполяризация.

Функция нейрона состоит в интеграции всех воздействий, воспринимаемых через синапсы на его теле и дендритах. Поскольку эти влияния могут быть возбуждающими или тормозными и не совпадать по времени, нейрон должен исчислять общий эффект синаптической активности как функцию времени. Если возбуждающее действие преобладает над тормозным и деполяризация мембраны превышает пороговую величину, происходит активация определенной части мембраны нейрона – в области основания его аксона (аксонного бугорка). Здесь в результате открытия каналов для ионов натрия и калия возникает потенциал действия (нервный импульс).

Этот потенциал распространяется далее по аксону к его окончанию со скоростью от 0,1 м/с до 100 м/с (чем толще аксон, тем выше скорость проведения). Когда потенциал действия достигает окончания аксона, активируется еще один тип ионных каналов, зависящий от разности потенциалов, – кальциевые каналы. По ним кальций входит внутрь аксона, что приводит к мобилизации пузырьков с нейромедиатором, которые приближаются к пресинаптической мембране, сливаются с ней и высвобождают нейромедиатор в синапс.

Миелин и глиальные клетки.

Многие аксоны покрыты миелиновой оболочкой, которая образована многократно закрученной мембраной глиальных клеток. Миелин состоит преимущественно из липидов, что и придает характерный вид белому веществу головного и спинного мозга. Благодаря миелиновой оболочке скорость проведения потенциала действия по аксону увеличивается, так как ионы могут перемещаться через мембрану аксона лишь в местах, не покрытых миелином, – т.н. перехватах Ранвье. Между перехватами импульсы проводятся по миелиновой оболочке как по электрическому кабелю. Поскольку открытие канала и прохождение по нему ионов занимает какое-то время, устранение постоянного открывания каналов и ограничение их сферы действия небольшими зонами мембраны, не покрытыми миелином, ускоряет проведение импульсов по аксону примерно в 10 раз.

Только часть глиальных клеток участвует в формировании миелиновой оболочки нервов (шванновские клетки) или нервных трактов (олигодендроциты). Гораздо более многочисленные глиальные клетки (астроциты, микроглиоциты) выполняют иные функции: образуют несущий каркас нервной ткани, обеспечивают ее метаболические потребности и восстановление после травм и инфекций.

КАК РАБОТАЕТ МОЗГ

Рассмотрим простой пример. Что происходит, когда мы берем в руку карандаш, лежащий на столе? Свет, отраженный от карандаша, фокусируется в глазу хрусталиком и направляется на сетчатку, где возникает изображение карандаша; оно воспринимается соответствующими клетками, от которых сигнал идет в основные чувствительные передающие ядра головного мозга, расположенные в таламусе (зрительном бугре), преимущественно в той его части, которую называют латеральным коленчатым телом. Там активируются многочисленные нейроны, которые реагируют на распределение света и темноты. Аксоны нейронов латерального коленчатого тела идут к первичной зрительной коре, расположенной в затылочной доле больших полушарий. Импульсы, пришедшие из таламуса в эту часть коры, преобразуются в ней в сложную последовательность разрядов корковых нейронов, одни из которых реагируют на границу между карандашом и столом, другие – на углы в изображении карандаша и т.д. Из первичной зрительной коры информация по аксонам поступает в ассоциативную зрительную кору, где происходит распознавание образов, в данном случае карандаша. Распознавание в этой части коры основано на предварительно накопленных знаниях о внешних очертаниях предметов.

Планирование движения (т.е. взятия карандаша) происходит, вероятно, в коре лобных долей больших полушарий. В этой же области коры расположены двигательные нейроны, которые отдают команды мышцам руки и пальцев. Приближение руки к карандашу контролируется зрительной системой и интерорецепторами, воспринимающими положение мышц и суставов, информация от которых поступает в ЦНС. Когда мы берем карандаш в руку, рецепторы в кончиках пальцев, воспринимающие давление, сообщают, хорошо ли пальцы обхватили карандаш и каким должно быть усилие, чтобы его удержать. Если мы захотим написать карандашом свое имя, потребуется активация другой хранящейся в мозге информации, обеспечивающей это более сложное движение, а зрительный контроль будет способствовать повышению его точности.

На приведенном примере видно, что выполнение довольно простого действия вовлекает обширные области мозга, простирающиеся от коры до подкорковых отделов. При более сложных формах поведения, связанных с речью или мышлением, активируются другие нейронные цепи, охватывающие еще более обширные области мозга.

ОСНОВНЫЕ ЧАСТИ ГОЛОВНОГО МОЗГА

Головной мозг можно условно разделить на три основные части: передний мозг, ствол мозга и мозжечок. В переднем мозгу выделяют большие полушария, таламус, гипоталамус и гипофиз (одну из важнейших нейроэндокринных желез). Ствол мозга состоит из продолговатого мозга, моста (варолиева моста) и среднего мозга.

Большие полушария

– самая большая часть мозга, составляющая у взрослых примерно 70% его веса. В норме полушария симметричны. Они соединены между собой массивным пучком аксонов (мозолистым телом), обеспечивающим обмен информацией.

Каждое полушарие состоит из четырех долей: лобной, теменной, височной и затылочной. В коре лобных долей содержатся центры, регулирующие двигательную активность, а также, вероятно, центры планирования и предвидения. В коре теменных долей, расположенных позади лобных, находятся зоны телесных ощущений, в том числе осязания и суставно-мышечного чувства. Сбоку к теменной доле примыкает височная, в которой расположены первичная слуховая кора, а также центры речи и других высших функций. Задние отделы мозга занимает затылочная доля, расположенная над мозжечком; ее кора содержит зоны зрительных ощущений.

Области коры, непосредственно не связанные с регуляцией движений или анализом сенсорной информации, именуются ассоциативной корой. В этих специализированных зонах образуются ассоциативные связи между различными областями и отделами мозга и интегрируется поступающая от них информация. Ассоциативная кора обеспечивает такие сложные функции, как научение, память, речь и мышление.

Подкорковые структуры.

Ниже коры залегает ряд важных мозговых структур, или ядер, представляющих собой скопление нейронов. К их числу относятся таламус, базальные ганглии и гипоталамус. Таламус – это основное сенсорное передающее ядро; он получает информацию от органов чувств и, в свою очередь, переадресует ее соответствующим отделам сенсорной коры. В нем имеются также неспецифические зоны, которые связаны практически со всей корой и, вероятно, обеспечивают процессы ее активации и поддержания бодрствования и внимания. Базальные ганглии – это совокупность ядер (т.н. скорлупа, бледный шар и хвостатое ядро), которые участвуют в регуляции координированных движений (запускают и прекращают их).

Гипоталамус – маленькая область в основании мозга, лежащая под таламусом. Богато снабжаемый кровью, гипоталамус – важный центр, контролирующий гомеостатические функции организма. Он вырабатывает вещества, регулирующие синтез и высвобождение гормонов гипофиза . В гипоталамусе расположены многие ядра, выполняющие специфические функции, такие, как регуляция водного обмена, распределения запасаемого жира, температуры тела, полового поведения, сна и бодрствования.

Ствол мозга

расположен у основания черепа. Он соединяет спинной мозг с передним мозгом и состоит из продолговатого мозга, моста, среднего и промежуточного мозга.

Через средний и промежуточный мозг, как и через весь ствол, проходят двигательные пути, идущие к спинному мозгу, а также некоторые чувствительные пути от спинного мозга к вышележащим отделам головного мозга. Ниже среднего мозга расположен мост, связанный нервными волокнами с мозжечком. Самая нижняя часть ствола – продолговатый мозг – непосредственно переходит в спинной. В продолговатом мозгу расположены центры, регулирующие деятельность сердца и дыхание в зависимости от внешних обстоятельств, а также контролирующие кровяное давление, перистальтику желудка и кишечника.

На уровне ствола проводящие пути, связывающие каждое из больших полушарий с мозжечком, перекрещиваются. Поэтому каждое из полушарий управляет противоположной стороной тела и связано с противоположным полушарием мозжечка.

Мозжечок

расположен под затылочными долями больших полушарий. Через проводящие пути моста он связан с вышележащими отделами мозга. Мозжечок осуществляет регуляцию тонких автоматических движений, координируя активность различных мышечных групп при выполнении стереотипных поведенческих актов; он также постоянно контролирует положение головы, туловища и конечностей, т.е. участвует в поддержании равновесия. Согласно последним данным, мозжечок играет весьма существенную роль в формировании двигательных навыков, способствуя запоминанию последовательности движений.

Другие системы.

Лимбическая система – широкая сеть связанных между собой областей мозга, которые регулируют эмоциональные состояния, а также обеспечивают научение и память. К ядрам, образующим лимбическую систему, относятся миндалевидные тела и гиппокамп (входящие в состав височной доли), а также гипоталамус и ядра т.н. прозрачной перегородки (расположенные в подкорковых отделах мозга).

Ретикулярная формация – сеть нейронов, протянувшаяся через весь ствол к таламусу и далее связанная с обширными областями коры. Она участвует в регуляции сна и бодрствования, поддерживает активное состояние коры и способствует фокусированию внимания на определенных объектах.

ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ МОЗГА

С помощью электродов, размещенных на поверхности головы или введенных в вещество мозга, можно зафиксировать электрическую активность мозга, обусловленную разрядами его клеток. Запись электрической активности мозга с помощью электродов на поверхности головы называется электроэнцефалограммой (ЭЭГ). Она не позволяет записать разряд отдельного нейрона. Только в результате синхронизированной активности тысяч или миллионов нейронов появляются заметные колебания (волны) на записываемой кривой.

При постоянной регистрации на ЭЭГ выявляются циклические изменения, отражающие общий уровень активности индивида. В состоянии активного бодрствования ЭЭГ фиксирует низкоамплитудные неритмичные бета-волны. В состоянии расслабленного бодрствования с закрытыми глазами преобладают альфа-волны частотой 7–12 циклов в секунду. О наступлении сна свидетельствует появление высокоамплитудных медленных волн (дельта-волн). В периоды сна со сновидениями на ЭЭГ вновь появляются бета-волны, и на основании ЭЭГ может создаться ложное впечатление, что человек бодрствует (отсюда термин «парадоксальный сон»). Сновидения часто сопровождаются быстрыми движениями глаз (при закрытых веках). Поэтому сон со сновидениями называют также сном с быстрыми движениями глаз (см. также СОН). ЭЭГ позволяет диагностировать некоторые заболевания мозга, в частности эпилепсию (см. ЭПИЛЕПСИЯ).

Если регистрировать электрическую активность мозга во время действия определенного стимула (зрительного, слухового или тактильного), то можно выявить т.н. вызванные потенциалы – синхронные разряды определенной группы нейронов, возникающие в ответ на специфический внешний стимул. Исследование вызванных потенциалов позволило уточнить локализацию мозговых функций, в частности связать функцию речи с определенными зонами височной и лобной долей. Это исследование помогает также оценить состояние сенсорных систем у больных с нарушением чувствительности.

НЕЙРОХИМИЯ МОЗГА

К числу самых важных нейромедиаторов мозга относятся ацетилхолин, норадреналин, серотонин, дофамин, глутамат, гамма-аминомасляная кислота (ГАМК), эндорфины и энкефалины. Помимо этих хорошо известных веществ, в мозге, вероятно, функционирует большое количество других, пока не изученных. Некоторые нейромедиаторы действуют только в определенных областях мозга. Так, эндорфины и энкефалины обнаружены лишь в путях, проводящих болевые импульсы. Другие медиаторы, такие, как глутамат или ГАМК, более широко распространены.

Действие нейромедиаторов.

Как уже отмечалось, нейромедиаторы, воздействуя на постсинаптическую мембрану, изменяют ее проводимость для ионов. Часто это происходит через активацию в постсинаптическом нейроне системы второго «посредника», например циклического аденозинмонофосфата (цАМФ). Действие нейромедиаторов может видоизменяться под влиянием другого класса нейрохимических веществ – пептидных нейромодуляторов. Высвобождаемые пресинаптической мембраной одновременно с медиатором, они обладают способностью усиливать или иным образом изменять эффект медиаторов на постсинаптическую мембрану.

Важное значение имеет недавно открытая эндорфин-энкефалиновая система. Энкефалины и эндорфины – небольшие пептиды, которые тормозят проведение болевых импульсов, связываясь с рецепторами в ЦНС, в том числе в высших зонах коры. Это семейство нейромедиаторов подавляет субъективное восприятие боли.

Психоактивные средства

– вещества, способные специфически связываться с определенными рецепторами в мозгу и вызывать изменение поведения. Выявлено несколько механизмов их действия. Одни влияют на синтез нейромедиаторов, другие – на их накопление и высвобождение из синаптических пузырьков (например, амфетамин вызывает быстрое высвобождение норадреналина). Третий механизм состоит в связывании с рецепторами и имитации действия естественного нейромедиатора, например эффект ЛСД (диэтиламида лизергиновой кислоты) объясняют его способностью связываться с серотониновыми рецепторами. Четвертый тип действия препаратов – блокада рецепторов, т.е. антагонизм с нейромедиаторами. Такие широко используемые антипсихотические средства, как фенотиазины (например, хлорпромазин, или аминазин), блокируют дофаминовые рецепторы и тем самым снижают эффект дофамина на постсинаптические нейроны. Наконец, последний из распространенных механизмов действия – торможение инактивации нейромедиаторов (многие пестициды препятствуют инактивации ацетилхолина).

Давно известно, что морфин (очищенный продукт опийного мака) обладает не только выраженным обезболивающим (анальгетическим) действием, но и свойством вызывать эйфорию. Именно поэтому его и используют как наркотик. Действие морфина связано с его способностью связываться с рецепторами эндорфин-энкефалиновой системы человека (см. также НАРКОТИК). Это лишь один из многих примеров того, что химическое вещество иного биологического происхождения (в данном случае растительного) способно влиять на работу мозга животных и человека, взаимодействуя со специфическими нейромедиаторными системами. Другой хорошо известный пример – кураре, получаемое из тропического растения и способное блокировать ацетилхолиновые рецепторы. Индейцы Южной Америки смазывали кураре наконечники стрел, используя его парализующее действие, связанное с блокадой нервно-мышечной передачи.

ИССЛЕДОВАНИЯ МОЗГА

Исследования мозга затруднены по двум основным причинам. Во-первых, к мозгу, надежно защищенному черепом, невозможен прямой доступ. Во-вторых, нейроны мозга не регенерируют, поэтому любое вмешательство может привести к необратимому повреждению.

Несмотря на эти трудности, исследования мозга и некоторые формы его лечения (прежде всего нейрохирургическое вмешательство) известны с древних времен. Археологические находки показывают, что уже в древности человек производил трепанацию черепа, чтобы получить доступ к мозгу. Особенно интенсивные исследования мозга проводились в периоды войн, когда можно было наблюдать разнообразные черепно-мозговые травмы.

Повреждение мозга в результате ранения на фронте или травмы, полученной в мирное время, – своеобразный аналог эксперимента, при котором разрушают определенные участки мозга. Поскольку это единственно возможная форма «эксперимента» на мозге человека, другим важным методом исследований стали опыты на лабораторных животных. Наблюдая поведенческие или физиологические последствия повреждения определенной мозговой структуры, можно судить о ее функции.

Электрическую активность мозга у экспериментальных животных регистрируют с помощью электродов, размещенных на поверхности головы или мозга либо введенных в вещество мозга. Таким образом удается определить активность небольших групп нейронов или отдельных нейронов, а также выявить изменения ионных потоков через мембрану. С помощью стереотаксического прибора, позволяющего ввести электрод в определенную точку мозга, исследуют его малодоступные глубинные отделы.

Другой подход состоит в том, что извлекают небольшие участки живой мозговой ткани, после чего ее существование поддерживают в виде среза, помещенного в питательную среду, или же клетки разобщают и изучают в клеточных культурах. В первом случае можно исследовать взаимодействие нейронов, во втором – жизнедеятельность отдельных клеток.

При изучении электрической активности отдельных нейронов или их групп в различных областях мозга вначале обычно регистрируют исходную активность, затем определяют эффект того или иного воздействия на функцию клеток. Согласно другому методу, через имплантированный электрод подается электрический импульс, с тем чтобы искусственно активировать ближайшие нейроны. Так можно изучать воздействие определенных зон мозга на другие его области. Этот метод электрической стимуляции оказался полезен при исследовании стволовых активирующих систем, проходящих через средний мозг; к нему прибегают также и при попытках понять, как протекают процессы научения и памяти на синаптическом уровне.

Уже сто лет назад стало ясно, что функции левого и правого полушарий различны. Французский хирург П.Брока, наблюдая за больными с нарушением мозгового кровообращения (инсультом), обнаружил, что расстройством речи страдали только больные с повреждением левого полушария. В дальнейшем исследования специализации полушарий были продолжены с помощью иных методов, например регистрации ЭЭГ и вызванных потенциалов.

В последние годы для получения изображения (визуализации) мозга используют сложные технологии. Так, компьютерная томография (КТ) произвела революцию в клинической неврологии, позволив получать прижизненное детальное (послойное) изображение структур мозга. Другой метод визуализации – позитронная эмиссионная томография (ПЭТ) – дает картину метаболической активности мозга. В этом случае человеку вводится короткоживущий радиоизотоп, который накапливается в различных отделах мозга, причем тем больше, чем выше их метаболическая активность. С помощью ПЭТ было также показано, что речевые функции у большинства обследованных связаны с левым полушарием. Поскольку мозг работает с использованием огромного числа параллельных структур, ПЭТ дает такую информацию о функциях мозга, которая не может быть получена с помощью одиночных электродов.

Как правило, исследования мозга проводятся с применением комплекса методов. Например, американский нейробиолог Р.Сперри с сотрудниками в качестве лечебной процедуры производил перерезку мозолистого тела (пучка аксонов, связывающих оба полушария) у некоторых больных эпилепсией. В последующем у этих больных с «расщепленным» мозгом исследовалась специализация полушарий. Было выявлено, что за речь и другие логические и аналитические функции ответственно преимущественно доминантное (обычно левое) полушарие, тогда как недоминантное полушарие анализирует пространственно-временные параметры внешней среды. Так, оно активируется, когда мы слушаем музыку. Мозаичная картина активности мозга свидетельствует о том, что внутри коры и подкорковых структур существуют многочисленные специализированные области; одновременная активность этих областей подтверждает концепцию мозга как вычислительного устройства с параллельной обработкой данных.

СРАВНИТЕЛЬНАЯ АНАТОМИЯ

У различных видов позвоночных устройство мозга удивительно схоже. Если проводить сопоставление на уровне нейронов, то обнаруживается отчетливое сходство таких характеристик, как используемые нейромедиаторы, колебания концентраций ионов, типы клеток и физиологические функции. Фундаментальные различия выявляются лишь при сравнении с беспозвоночными. Нейроны беспозвоночных значительно крупнее; часто они связаны друг с другом не химическими, а электрическими синапсами, редко встречающимися в мозгу человека. В нервной системе беспозвоночных выявляются некоторые нейромедиаторы, не свойственные позвоночным.

Нервная система человека (в том числе и мозг) является регулятором функций живого организма. Благодаря ней он может реагировать на события и принимать определённые решения. Во всём этом важную роль играет мозг.

Его функции и строение изучаются медиками до сих пор, поэтому в статье цифры будут очень часто указываться только в примерном диапазоне. И все же давайте выясним, что такое мозг.

Общая информация

Говоря о том, что такое мозг, сложно обойти вниманием нейроны. Точное их количество не установлено, а различные модели подсчета позволяют судить, что их от 25 до 86 млрд (второе число - это самые свежие данные). Из нейронов формируется серое вещество. Сам мозг укрыт тремя оболочками:

  • мягкой;
  • твердой;
  • паутинной (в ней находится мозговая жидкость, которая выступает в роли амортизатора, защищающего серое вещество от ударов).

Говоря о весе, следует отметить имеющиеся различия. Так, у мужчин масса мозга в среднем равна примерно 1375 г, тогда как у женщин 1245 г. Но, кстати, уровень умственного развития это не определяет, как ни странно на первый взгляд.

Для интеллектуальной мощности мозга большую важность имеет количество связей, которые создаются нейронами, чем его вес. Ведь если сравнить нас с другими животными, то на планете есть много существ, которые могут похвастаться гораздо большей массой названного органа.

Но давайте вернемся к человеку и поговорим про головной мозг новорожденных. Интересно, что первоначально его вес равняется примерно 1/8 массы тела малыша (условно - около 400 грамм). Хорошо выраженными являются борозды и крупные извилины (правда они не могут похвастаться глубиной и высотой). А в течение первых нескольких лет жизни ребенка мозг приобретает черты взрослого человека.

Нейроны и нервы

Клетки мозга, которые генерируют и передают импульсы, называются нейронами, а дополнительные функции выполняют глии. В сером веществе находятся полости, которые называют желудочками. От него в остальные части человеческого тела тянутся черепно-мозговые нервы в количестве двенадцати пар.

Нейроны и нервы создают разные отделы со своими уникальными функциями. От их деятельности полностью зависят возможности всего организма. Каждый нейрон потенциально может иметь до 10 тысяч контактов, которыми он соединяется с другими составляющими мозга.

Важным также является белое вещество. Так называют нервные волокна, которые используются организмом для соединения между собой полушарий, разных корковых участков и с нижерасположенными образованиями. находится между мозговой корой и базальными ядрами. В нём различают четыре части, классификация которых ведется в зависимости от их расположения.

Строение

Условно главный мозг делят на три части:

  1. Большие полушария
  2. Мозжечок.
  3. Ствол мозга.

Также в нём выделяют пять отделов:

  1. Конечный (на который припадает примерно 80% всей массы).
  2. Задний (сюда относят мозжечок и мост).
  3. Промежуточный.
  4. Продолговатый.
  5. Средний.

Кроме того, в мозге специалистами выделяется три типа коры:

  1. Древняя.
  2. Старая.
  3. Новая.

Что такое кора мозга

Корой мозга называют поверхностный слой, толщина которого примерно 3 мм, укрывающий полушария человека. Главным образом для её создания организмом используются вертикально ориентированные у которых есть отростки. Хотя следует отметить, что при ее исследовании также были найдены эфферентные и афферентные волокна, а также нейро-глии.

Три типа коры укладывается в шесть слоев. Они все обладают разной плотностью расположения, шириной, размером и формой нейронов. Кора главного мозга может похвастаться площадью в 2200 кв. см. Это достигается благодаря ее вертикальной исчерчености. В ней также находится примерно 10 млрд нейронов человека.

Функции коры

Кора мозга выполняет несколько специфических задач. Каждая ее область отвечает за что-то определённое. Так, благодаря мы можем обрабатывать воздуха (звук) и реагировать на запахи. 3атылочная помогает нам работать с визуальной информацией. Теменная часть коры позволяет осязать пространство вокруг и определяать все на вкус. Лобная отвечает за движение, сложное мышление и речь.

Не менее важными с функциональной точки зрения являются базальные ганглии, которые используются для того, чтобы передавать информацию.

Отделы мозга

Всеми важными для человека процессами управляет Он, к тому же, оказывает влияние на наши интеллектуальные способности.

Промежуточный мозг состоит из дорсальной (верхней) и вентральной (нижней) части. В первой большую важность играет таламус. Он выступает в качестве посредника, который направляет все полученные раздражения к полушариям. Благодаря нему организм может быстро приспособится к внешней среде при изменениях.

Вентральной частью считают гипоталамус. Так называют подкорковый центр, где происходит регуляция вегетативных функций. Под его влияние подпадает нервная система, железы внутренней секреции, обмен веществ и много других важных для организма процессов. Благодаря нему регулируется уровень бодрствования и сна человека, а также его пищевое и питьевое поведение.

Под гипоталамусом находится гипофиз, на котором лежит ответственность за температуру тела. Также благодаря нему регулируется пищеварительная и сердечно-сосудистая система.

Продолжая выяснять, что такое мозг, переходим к заднему отделу - он необходим для качественной работы проводниковой функции. Внешне этот участок выглядит как мост с размещенным позади мозжечком. Несмотря на его малой вес (около 120-150 грамм), функциональная ценность этого компонента высока. Так, от мозжечка зависит координация нашего движения. Нижняя часть его поверхности соприкасается с продолговатым мозгом. Он соединяет главный и спинной мозг человека. Здесь можно найти и белое, и серое вещество.

От продолговатого мозга в значительной степени зависит наша координация, равновесие, обмен веществ, кровообращение и дыхание. Даже когда мы кашляем и чихаем, работает именно он. Средний мозг отвечает за наше скрытое зрение. В нём же расположен и центр ориентировочного рефлекса, которым обеспечивается резкий поворот тела в сторону громкого шума (или иного неожиданного раздражителя). Благодаря нему у людей есть рефлекс мозга, проявляющийся в том, что человек может уклоняться от летящих в его сторону вещей или ударов.

Кто и где изучает мозг

Для изучения мозга создаются специальные научно-исследовательские центры по всему миру. Так, в Российской Федерации есть Институт мозга в Санкт-Петербурге, который считается составной частью Академии наук. Это позволяет сосредотачивать в одном месте специалистов с высоким уровнем подготовки и высококлассное новейшее оборудование.

Учитывая сложность изучаемого объекта, даже несмотря на большое количество уделённого ему внимания, ученые так и не смогли полностью разобраться в том, как он работает. И это несмотря на то что институт мозга не один во всём мире и функционируют они давно. Но, тем не менее, исследования идут, и скоро даже повреждение мозга не будет являться сложной проблемой.

Как проводится диагностика текущего положения дел

Для диагностирования состояния столь важного органа используется специальное исследование - энцефалограмма мозга. Благодаря ей можно получить высокоточные данные. В наше время это самая передовая методика, которая широко применяется во всем мире. Как всё происходит?

Энцефалограмма мозга - это специальная кривая, которая возникает под действием регистрации колебаний, которые происходят в человеческом мозге. Колебания улавливаются через кожный покров благодаря прикреплению специальных датчиков. Таким образом, диагносты получают картину активности мозга. Если человек здоров, то она будет гармоничной. Протекающие нервные процессы в таком случае хорошо выражены. При патологиях можно наблюдать различные отклонения.

Используя энцефалограмму мозга можно отследить, как работает центральная нервная система. Так, под наблюдение легко попадают согласованность и ритмичность происходящих процессов. На основании этих данных можно построить схему конкретного человека и выявить место потенциального нарушения.

Позитивно на точности полученных результатов отображается новизна оборудования и опытность диагноста. Благодаря самой современной аппаратуре можно быстро выявить повреждения, которые скрываются в самой глубине структуры. А исследования можно вести на протяжении целых суток, чтобы выявить истинную причину возникших нарушений. Состояние мозга будет измеряться и днём, и ночью. Тогда у врачей будет более полная картина о том, что происходит с пациентом.

Заключение

Итак, мы с вами выяснили, что такое мозг, как он устроен, какие функции выполняет, как работает, а также где и кто его изучает. Конечно, предоставленной информации слишком мало, чтобы можно было сказать, что о нём всё известно. Но всё большое начинается с малого. Поэтому если у вас есть интерес к данной теме, то можно запросто найти уйму различной информации, позволяющей существенно дополнить багаж знаний. Причем для этих целей лучше всего будет использовать специализированную медицинскую литературу, где обо всем расскажут специалисты.

Человек летает в космос и погружается в морские глубины, создал цифровое телевидение и сверхмощные компьютеры. Однако сам механизм мыслительного процесса и орган, в котором происходит умственная деятельность, как и причины, побуждающие нейроны взаимодействовать, до сих пор остаются загадкой.

Головной мозг – важнейший орган человеческого организма, материальный субстрат высшей нервной деятельности. От него зависит, что человек чувствует, делает, о чем думает. Мы слышим не ушами и видим не глазами, а соответствующими участками коры головного мозга. Он же вырабатывает гормоны удовольствия, вызывает прилив сил и утоляет боль. В основе нервной деятельности лежат рефлексы, инстинкты, эмоции и другие психические явления. Научное понимание работы мозга все еще отстает от понимания функционирования всего организма в целом. Это, безусловно, связано с тем, что мозг – гораздо более сложный орган по сравнению с любым другим. Мозг – самый сложный объект в известной нам вселенной.

Справка

У человека отношение массы головного мозга к массе тела в среднем равно 2%. А если поверхность этого органа разгладить, получится примерно 22 кв. метра органики. Мозг содержит около 100 миллиардов нервных клеток (нейронов). Чтобы вы могли представить себе это количество, напомним: 100 миллиардов секунд – это примерно 3 тысячи лет. Каждый нейрон контактирует с 10 тысячами других. И каждый из них способен к высокоскоростной передаче импульсов, поступающих от одной клетки к другой химическим путем. Нейроны могут одновременно взаимодействовать с несколькими другими нейронами, в том числе находящимися в удаленных отделах мозга.

Только факты

  • Мозг – лидер по энергопотреблению в организме. На него работает 15% сердца, и он потребляет около 25% кислорода, захватываемого легкими. Для доставки кислорода к мозгу работают три крупные артерии, которые предназначены для его постоянной подпитки.
  • Около 95% тканей мозга окончательно формируются к 17 годам. К концу пубертатного периода мозг человека составляет полноценный орган.
  • Головной мозг не чувствует боли. В мозге нет болевых рецепторов: зачем они, если разрушение мозга приводит к смерти организма? Дискомфорт может чувствовать оболочка, в которую заключен наш мозг, – так мы испытываем головную боль.
  • У мужчин мозг обычно больше, чем у женщин. Средний вес головного мозга взрослого мужчины – 1375 г, взрослой женщины – 1275 г. Они также различаются размерами различных областей. Однако учеными доказано, что это не имеет отношения к интеллектуальным способностям, а самый большой и тяжелый мозг (2850 г), который описывали исследователи, принадлежал пациенту психиатрической больницы, страдающему идиотизмом.
  • Человек использует практически все ресурсы своего мозга. То, что мозг работает всего на 10%, – миф. Ученые доказали, что имеющиеся резервы мозга человек задействует в критических ситуациях. Например, когда кто-то убегает от злой собаки, он может перепрыгнуть через высокий забор, который в обычных условиях он ни за что не преодолел бы. В экстренный момент в мозг вливаются определенные вещества, которые стимулируют действия того, кто оказался в критической ситуации. По сути, это допинг. Однако проделывать такое постоянно опасно – человек может умереть, потому что исчерпает все свои резервные возможности.
  • Мозг можно целенаправленно развивать, тренировать. Например, полезно заучивать тексты наизусть, решать логические и математические задачи, изучать иностранные языки, познавать новое. Также психологи советуют правшам периодически «главной» рукой делать левую, а левшам – правую.
  • Мозг обладает свойством пластичности. Если поражен один из отделов нашего важнейшего органа, другие через некоторое время смогут компенсировать его утраченную функцию. Именно пластичность мозга играет исключительно важную роль в овладении новыми навыками.
  • Клетки головного мозга восстанавливаются. Синапсы, связывающие нейроны, и сами нервные клетки важнейшего из органов регенерируются, но не так быстро, как клетки других органов. Пример тому – реабилитация людей после черепно-мозговых травм. Ученые обнаружили, что в отделе мозга, отвечающего за обоняние, из клеток-предшественниц образуются зрелые нейроны. В нужный момент они помогают «починить» травмированный мозг. Ежедневно в его коре могут образовываться десятки тысяч новых нейронов, однако впоследствии может прижиться не больше десяти тысяч. Сегодня известны две области активного прироста нейронов: зона памяти и зона, ответственная за движения.
  • Мозг активно работает во время сна. Человеку важно иметь память. Она бывает долгосрочная и краткосрочная. Перевод информации из краткосрочной в долгосрочную память, запоминание, «раскладывание по полочкам», осмысление информации, которую человек получает в течение дня, происходит именно во сне. А чтобы тело не повторяло в реальности движения из сна, мозг выделяет особый гормон.

Мозг способен значительно ускорять свою работу. Люди, пережившие ситуации угрозы для жизни, говорят, что за миг перед их глазами «пролетела вся жизнь». Ученые считают, что мозг в момент опасности и осознания грозящей смерти в сотни раз ускоряет работу: ищет в памяти аналогичные обстоятельства и способ помочь человеку успеть себя спасти.

Всестороннее изучение

Проблема исследования мозга человека – одна из самых захватывающих задач науки. Поставлена цель познать нечто, равное по сложности самому инструменту познания. Ведь все, что до сих пор исследовалось: и атом, и галактика, и мозг животного – было проще мозга человека. С философской точки зрения неизвестно, возможно ли в принципе решение этой задачи. Ведь главное средство познания не приборы и не методы, им остается наш человеческий мозг.

Существуют различные методы исследования. В первую очередь в практику ввели клинико-анатомическое сопоставление – смотрели, какая функция «выпадает» при повреждении определенной области мозга. Так, французский ученый Поль Брока 150 лет назад обнаружил центр речи. Он заметил, что у всех больных, которые не могут говорить, поражена определенная область мозга. Электроэнцефалография изучает электрические свойства мозга – исследователи смотрят, как электрическая активность разных участков мозга меняется в соответствии с тем, что делает человек.

Электрофизиологи регистрируют электрическую активность «мыслительного центра» организма с помощью электродов, позволяющих записывать разряды отдельных нейронов, или с помощью электроэнцефалографии. При тяжелейших заболеваниях мозга тонкие электроды могут вживляться в ткань органа. Это позволило получить важную информацию о механизмах работы мозга по обеспечению высших видов деятельности, были получены данные о соотношении коры и подкорки, о компенсаторных возможностях. Еще один метод изучения мозговых функций – электрическая стимуляция отдельных областей. Так канадским нейрохирургом Уайлдером Пенфилдом был исследован «моторный гомункулус». Было показано, что, стимулируя определенные точки в моторной коре, можно вызвать движение разных частей тела, и установлено представительство различных мышц и органов. В 1970-е годы, после изобретения компьютеров, представилась возможность еще более полно исследовать внутренний мир нервной клетки, появились новые методы интроскопии: магнитоэнцефалография, функциональная магниторезонансная томография и позитронно-эмиссионная томография. В последние десятилетия активно развивается метод нейровизуализации (наблюдение за реакцией отдельных частей мозга после введения определенных веществ).

Детектор ошибок

Очень важное открытие было сделано в 1968 году – ученые обнаружили детектор ошибок. Это механизм, который дает нам возможность производить рутинные действия, не задумываясь: например, умываться, одеваться и одновременно думать о своих делах. Детектор ошибок в подобных обстоятельствах все время следит, правильно ли вы действуете. Или, например, человек внезапно начинает чувствовать себя некомфортно – он возвращается домой и обнаруживает, что забыл выключить газ. Детектор ошибок позволяет нам даже не задумываться о десятках задач и решать их «на автомате», сходу отметая недопустимые варианты действий. За последние десятилетия наука узнала, как устроены многие внутренние механизмы человеческого организма. Например, путь, по которому зрительный сигнал доходит от сетчатки до мозга. Для решения более сложной задачи – мышления, опознания сигнала – задействована большая система, которая распространена по всему мозгу. Однако «центр управления» пока не найден и даже неизвестно, есть ли он.

Гениальный мозг

С середины XIX века ученые делали попытки изучения анатомических особенностей мозга людей с выдающимися способностями. На многих медицинских факультетах Европы хранились соответствующие препараты, в том числе и профессоров медицины, которые еще при жизни завещали свой мозг науке. От них не отставали русские ученые. В 1867 году на Всероссийской этнографической выставке, устроенной Императорским обществом любителей естествознания, было представлено 500 черепов и препаратов их содержимого. В 1887 году анатом Дмитрий Зернов опубликовал результаты исследования мозга легендарного генерала Михаила Скобелева. В 1908 году академик Владимир Бехтерев и профессор Рихард Вейнберг исследовали подобные препараты покойного Дмитрия Менделеева. Аналогичные препараты органов Бородина, Рубинштейна, математика Пафнутия Чебышева сохранены в анатомическом музее Военно-медицинской академии в Санкт-Петербурге. В 1915 году нейрохирург Борис Смирнов подробно описал мозг химика Николая Зинина, патолога Виктора Пашутина и писателя Михаила Салтыкова-Щедрина. В Париже был исследован мозг Ивана Тургенева, вес которого достигал рекордных 2012 г. В Стокгольме работали с соответствующими препаратами знаменитых ученых, в том числе Софьи Ковалевской. Специалисты Московского института мозга тщательно исследовали «мыслительные центры» вождей пролетариата: Ленина и Сталина, Кирова и Калинина, изучали извилины великого тенора Леонида Собинова, писателя Максима Горького, поэта Владимира Маяковского, режиссера Сергея Эйзенштейна... Сегодня ученые убеждены в том, что, на первый взгляд, мозг талантливых людей ничем не выделяется из ряда среднестатистических. Эти органы различаются структурой, размерами, формой, однако от этого ничего не зависит. Мы до сих пор не знаем, что именно делает человека талантливым. Можем только предполагать, что мозг таких людей немножко «сломан». Он может делать то, чего не могут нормальные, а значит, он не такой, как все.