Паровой котел тэц принцип работы. Тепловые электростанции (ТЭЦ, КЭС): разновидности, типы, принцип работы, топливо. Что такое АЭС

Назначение теплоэлектростанции заключается в превращении химической энергии топлива в электрическую энергию. Так как совершить такое преобразование непосредственно оказывается практически невозможным, то приходится сначала превращать химическую энергию топлива в тепло, что производится путем сжигания топлива, затем преобразовывать тепло в механическую энергию и, наконец, эту последнюю превращать в электрическую энергию.

На рисунке ниже представлена простейшая схема тепловой части электрической станции, именуемой часто паросиловой установкой. Сжигание топлива производится в топке . При этом . Полученное тепло передается воде, находящейся в паровом котле. Вследствие этого вода нагревается и затем испаряется, образуя так называемый насыщенный пар, т. е. пар, имеющий ту же температуру, что и кипящая вода. Далее тепло подводится к насыщенному пару, в результате чего образуется перегретый пар, т. е. пар, имеющий более высокую температуру, чем испаряющаяся при том же давлении вода. Перегретый пар получается из насыщенного в пароперегревателе, в большинстве случаев представляющем собой змеевик из стальных труб. Пар движется внутри труб, с внешней же стороны змеевик омывается горячими газами.

Если бы давление в котле было равно атмосферному, то воду необходимо было бы нагреть до температуры 100° С; при дальнейшем сообщении тепла она начала бы быстро испаряться. Получающийся при этом насыщенный пар имел бы также температуру 100° С. При атмосферном давлении пар будет перегретым в том случае, когда температура его выше 100° С. Если давление в котле выше атмосферного, то насыщенный пар имеет температуру выше 100° С. Температура насыщенного пара тем выше, чем больше давление. В настоящее время в энергетике вообще не применяются паровые котлы с давлением, близким к атмосферному. Гораздо более выгодным оказывается применение паровых котлов, рассчитанных на значительно большее давление, порядка 100 атмосфер и более. Температура насыщенного пара при этом составляет 310° С и более.

Из пароперегревателя перегретый водяной пар по стальному трубопроводу подается к тепловому двигателю, чаще всего - . В существующих паросиловых установках электрических станций другие двигатели почти никогда не применяются. Перегретый водяной пар, поступающий в тепловой двигатель, содержит большой запас тепловой энергии, выделившейся в результате сжигания топлива. Задачей теплового двигателя является преобразование тепловой энергии пара в механическую энергию.

Давление и температура пара на входе в паровую турбину, именуемые обычно , значительно выше, чем давление и температура пара на выходе из турбины. Давление и температура пара на выходе из паровой турбины, равные давлению и температуре в конденсаторе, называются обычно . В настоящее время, как уже было сказано, в энергетике применяется пар весьма высоких начальных параметров, с давлением до 300 атмосфер и с температурой до 600° С. Конечные параметры, напротив, выбираются низкими: давление около 0,04 атмосферы, т. е. в 25 раз меньше атмосферного, а температура около 30° С, т. е. близкой к температуре окружащей среды. При расширении пара в турбине вследствие уменьшения давления и температуры пара количество заключенной в нем тепловой энергии на много уменьшается. Так как процесс расширения пара происходит весьма быстро, то за это весьма короткое время сколько-нибудь значительный переход тепла от пара к окружающей среде осуществиться не успевает. Куда же идет избыток тепловой энергии? Известно ведь, что согласно основному закону природы - закону сохранения и превращения энергии - невозможно уничтожить или получить «из ничего» любое, даже самое малое, количество энергии. Энергия может только переходить из одного вида в другой. Очевидно, именно с такого рода преобразованием энергии мы имеем дело и в данном случае. Избыток тепловой энергии, заключенный ранее в паре, перешел в механическую энергию и может быть использован по нашему усмотрению.

О том, как работает паровая турбина, рассказывается в статье о .

Здесь мы скажем только, что струя пара, поступающая на лопатки турбины, имеет весьма большую скорость, часто превышающую скорость звука. Струя пара приводит во вращение диск паровой турбины и вал, на который диск насажен. Вал турбины может быть связан, например, с электрической машиной - генератором. В задачу генератора входит преобразование механической энергии вращения вала в энергию электрическую. Таким образом, химическая энергия топлива в паросиловой установке превращается в механическую и далее в электрическую энергию, которую можно хранить в ИБП переменного тока.

Пар, совершивший работу в двигателе, поступает в конденсатор. По трубкам конденсатора непрерывно прокачивается охлаждающая вода, забираемая обычно из какого-либо естественного водоема: реки, озера, моря. Охлаждающая вода забирает тепло от пара, поступившего в конденсатор, вследствие чего пар конденсируется, т. е. превращается в воду. Образовавшаяся в результате конденсации вода с помощью насоса подается в паровой котел, в котором снова испаряется, и весь процесс повторяется заново.

Таково в принципе действие паросиловой установки теплоэлектрической станции. Как видно, пар служит посредником, так называемым рабочим телом, с помощью которого химическая энергия топлива, преобразованная в тепловую энергию, превращается в механическую энергию.

Не следует думать, конечно, что устройство современного, мощного, парового котла или теплового двигателя столь просто, как это показано на рисунке выше. Напротив, котел и турбина, являющиеся важнейшими элементами паросиловой установки, имеют весьма сложное устройство.

К объяснению работы и мы сейчас и приступаем.

На рис. 1 показана принципиальная тепловая схема промышленно-отопительной ТЭЦ, где введены следующие обозначения: ПГ - парогенератор; Г - генератор; К - конденсатор; П1, П2, П3 - подогреватели высокого давления; ПН - питательный насос; ДПВ - деаэратор питательной воды; П4, П5, П6, П7 - подогреватели низкого давления; СМ1, СМ2, СМ3 - смесители; КН - конденсатный насос; ДН - дренажные насосы; СНI, СНII - сетевые насосы первой и второй ступени; НС, ВС - нижний и верхний сетевой подогреватель; ПВК - пиковый водогрейный котел; ТП - тепловой потребитель; ДКВ - деаэратор обратного конденсата и добавочной воды; Р - расширитель продувочной воды; ОП - охладитель продувочной воды.

Массовые расходы на рис. 1 обозначены следующим образом: D 0 - расход свежего пара; D к - пропуск пара в конденсатор; D 1 , D 2 , D 3 , D 4 , D 5 , D 6 , D 7 - расходы греющего пара на подогреватели; D п - расход пара на производственные нужды; D о.к - расход обратного конденсата; D в.с - расход греющего пара на верхнюю ступень сетевого подогревателя; D н.с - расход греющего пара на нижнюю ступень сетевого подогревателя; D д - расход греющего пара на деаэратор питательной воды; D д(в) - расход греющего пара на деаэратор обратного конденсата и добавочной воды; D пг - паропроизводительность парогенератора; D ут - потери от утечек; D пр - расход продувочной воды; Dґ пр - потери с продувочной водой; Dґ п - выпар из расширителя продувочной воды.

Турбоустановка ПТ имеет параметры свежего пара р 0 = 13 МПа, t 0 = 560 °С; давление в конденсаторе турбины составляет р к = 4 кПа. Коэффициент полезного действия парогенератора пг = 0,92; электромеханический к.п.д. турбины эм = 0,98; к.п.д. транспорта определяется потерями от утечек пара. Турбина имеет производственный отбор с давлением р п = 1,2 МПа в количестве D п т/ч (выбирается согласно варианту) и два теплофикационных отбора с номинальным отпуском тепла Q т0 МВт при расчетном режиме, соответствующем температуре наружного воздуха -5°С. Доля обратного конденсата от производственного потребителя составляет о.к % (от расхода отпущенного пара). Температура обратного конденсата t о.к = 70 °С.

Турбина ПТ двухцилиндровая, расход свежего пара на турбину D 0 =850 т/ч. Внутренний относительный к.п.д. цилиндра высокого давления составляет =0,88; внутренний относительный к.п.д. цилиндра низкого давления составляет =0,8. Потери пара и конденсата от утечек в долях от расхода свежего пара составляют ут =1%. Расход продувочной воды в долях от паропроизводительности парогенератора составляет пр =1,5%. Промышленный отбор осуществляется после цилиндра высокого давления (ЦВД), пар на подогрев сетевой воды отбирается из цилиндра низкого давления (ЦНД).

Основной конденсат и питательная вода подогреваются последовательно в четырех подогревателях низкого давления, в деаэраторе питательной воды ДКВ с давлением 0,6 МПа и в трех подогревателях высокого давления. Отпуск пара на эти подогреватели осуществляется из трех регулируемых и четырех нерегулируемых отборов пара.

Пар на подогреватели П1 и П2 отбирается отбирается из ЦВД, на подогреватель П3 и деаэратор ДПВ - из регулируемого промышленного отбора за ЦВД, на подогреватели П4 и П5 - из нерегулируемых отборов ЦНД, и на подогреватели П6 и П7 - из регулируемых теплофикационных отборов.

Подогреватели П1 и П2 имеют встроенные охладители дренажа. Энтальпия охлажденного дренажа превышает энтальпию воды на входе в данный подогреватель на величину од = 25 кДж/кг. Недогрев воды до температуры конденсации греющего пара в подогревателях высокого давления (П1, П2, П3) составляет нед = 3 °С, в подогревателях низкого давления (П4, П5, П6, П7) - нед = 5 °С.

Дренаж из подогревателей высокого давления сливается каскадно в деаэратор. Из П4 дренаж сливается в П5 и затем в П6, откуда дренажным насосом подается в смеситель СМ1 на линии основного конденсата между П5 и П6. Из П7 дренаж сливается в смеситель СМ3 перед конденсатным насосом КН.

Конденсат греющего пара из верхнего и нижнего сетевых подогревателей ВС и НС соответственно подаются дренажными насосами в смесители СМ1 между подогревателями П5 и П6 и СМ2 между подогревателями П6 и П7. Подогрев сетевой воды предусматривается последовательно в двух сетевых подогревателях. На входе в нижний сетевой подогреватель температура обратной сетевой воды составляет t о.с = 35 °С. Недогрев сетевой воды до температуры конденсации греющего пара в обоих подогревателях составляет нед = 2 °С. Насосы сетевой воды СНI установлены перед сетевыми подогревателями, сетевые насосы СНII - после сетевых подогревателей, перед пиковыми водогрейными котлами ПВК. Добавочная вода, восполняющая потери пара и конденсата, подогревается сначала в охладителе продувочной воды ОП, затем в деаэраторе ДКВ, где подогревается также обратный конденсат производственного отбора. В охладителе продувки ОП продувочная вода охлаждается до температуры, которая на о.п = 10 °С превышает температуру добавочной воды, нагретой в охладителе продувки. Исходная температура добавочной воды t дв = 20 °С. Деаэратор ДКВ обогревается паром из верхнего теплофикационного отбора, давление в деаэраторе поддерживается равным 0,12 МПа. Общий поток воды из ДКВ перекачивается в смеситель СМ1.Значения давлений пара в отборах турбины приведены в таблице 1. Остальные параметры приведены в таблице 2.

ТЭЦ - тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт. На заглавной фотографии видно 3 дымовые трубы ТЭЦ-3, высота самой высокой из них - 275 метров, вторая по высоте - 180 метров.

Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

Упрощенно принцип работы ТЭЦ можно описать следующим образом.

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф. В нашем случае это бурый уголь с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвейерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Вагоноопрокидыватель, с помощью которого уголь высыпается в бункера:

Здесь уголь измельчается и попадает в «топку»:



Паровой котел - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это за счет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На Красноярской ТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7 000 тонн! Производительность котла - 670 тонн пара в час:

Вид сверху:

Невероятное количество труб:

Отчётливо виден барабан котла . Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения:

Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, и очищенный дым уходит в атмосферу. Эффективная степень очистки дымовых газов составляет 99.7%.

На фотографии те самые электрофильтры:

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия.

Недостатком ТЭЦ является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

На Красноярской ТЭЦ-3 используется прямоточная система водоснабжения, то есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку. После использования вода возвращается по каналу обратно в Енисей.

Турбогенератор:

Теперь немного о самой Красноярской ТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года. На ТЭЦ работает около 560 человек.

Диспетчерская:

Еще на Красноряской ТЭЦ-3 функционируют 4 водогрейных котла:

Глазок в топке:

А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной:

Кстати, самая высокая дымовая труба в мире находится на электростанции в Казахстане в городе Экибастуз. Ее высота - 419.7 метров. Это она:

Трансформаторы:

Внутри здания ЗРУЭ (закрытое распределительное устройство с элегазовой изоляцией) на 220 кВ:

Общий вид распределительного устройства:

На этом всё. Спасибо за внимание.

Теплоэлектроцентраль

Простейшие схемы теплоэлектроцентралей с различными турбинами и различными схемами отпуска пара
а - турбина с противодавлением и отбором пара, отпуск тепла - по открытой схеме;
б - конденсационная турбина с отбором пара, отпуск тепла - по открытой и закрытой схемам;
ПК - паровой котёл ;
ПП - пароперегреватель ;
ПТ - паровая турбина ;
Г - электрический генератор ;
К - конденсатор ;
П - регулируемый производственный отбор пара на технологические нужды промышленности;
Т - регулируемый теплофикационный отбор на отопление;
ТП - тепловой потребитель;
ОТ - отопительная нагрузка;
КН и ПН - конденсатный и питательный насосы;
ПВД и ПНД - подогреватели высокого и низкого давления;
Д - деаэратор ;
ПБ - бак питательной воды;
СП - сетевой подогреватель;
СН - сетевой насос.

Теплоэлектроцентраль (ТЭЦ) - тепловая электростанция , вырабатывающая не только электрическую энергию , но и тепло , отпускаемое потребителям в виде пара и горячей воды. Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы , является отличительной особенностью ТЭЦ и носит название теплофикация . Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях (в СССР - ГРЭС) и тепловой энергии на местных котельных установках. Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, централизованной системой теплоснабжения способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению санитарного состояния населённых мест.

Описание

Исходный источник энергии на ТЭЦ - органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на атомных ТЭЦ). Преимущественное распространение имеют паротурбинные ТЭЦ на органическом топливе, являющиеся наряду с конденсационными электростанциями основным видом тепловых паротурбинных электростанций (ТПЭС). Различают ТЭЦ промышленного типа - для снабжения теплом промышленных предприятий, и отопительного типа - для отопления жилых и общественных зданий, а также для снабжения их горячей водой . Тепло от промышленных ТЭЦ передаётся на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных - на расстояние до 20-30 км (в виде тепла горячей воды).

  • Угольная ТЭЦ в Англии

Теплофикационные турбины

Основное оборудование паротурбинных ТЭЦ - турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрическую энергию , и котлоагрегаты, вырабатывающие пар для турбин . В состав турбоагрегата входят паровая турбина и синхронный генератор . Паровые турбины, используемые на ТЭЦ, называются теплофикационными турбинами (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0,7-1,5 Мн/м 2 (устанавливаются на ТЭЦ, снабжающих паром промышленные предприятия); с конденсацией и отборами пара под давлением 0,7- 1,5 Мн/м 2 (для промышленных потребителей) и 0,05-0,25 Мн/м 2 (для коммунально-бытовых потребителей); с конденсацией и отбором пара (отопительным) под давлением 0,05-0,25 Мн/м2.

Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрическая мощность , развиваемая такими турбинами , зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, например, бывает в летнее время на отопительных ТЭЦ) они не вырабатывают электрической мощности . Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на всё время действия ТЭЦ (то есть преимущественно на промышленных ТЭЦ).

У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдаётся в конденсаторе охлаждающей воде и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по «тепловому» графику, то есть с минимальным «вентиляционным» пропуском пара в конденсатор . ТТ с конденсацией и отбором пара получили на ТЭЦ преимущественное распространение как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрическую нагрузки практически независимо; в частном случае, при пониженных тепловых нагрузках или при их отсутствии, ТЭЦ может работать по «электрическому» графику, с необходимой, полной или почти полной электрической мощностью .

Мощность теплофикационных турбоагрегатов

Электрическую мощность теплофикационных турбоагрегатов (в отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара . Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с промышленными и отопительными отборами и Т-175 с отопительным отбором имеют одинаковый расход свежего пара (около 750 т/ч), но различную электрическую мощность (соответственно 100, 135 и 175 Мвт). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (около 800 т/ч). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицировались также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/ч используют для снабжения паром как конденсационных турбин на 300 Мвт, так и самых крупных в мире ТТ на 250 Мвт.

Давление свежего пара на ТЭЦ принято в СССР равным ~ 13-14 Мн/м 2 (преимущественно) и ~ 24-25 Мн/м 2 (на наиболее крупных теплофикационных энергоблоках - мощностью 250 Мвт). На ТЭЦ с давлением пара 13-14 Мн/м 2 , в отличие от ГРЭС, отсутствует промежуточный перегрев пара, так как на таких ТЭЦ он не даёт столь существенных технических и экономических преимуществ, как на ГРЭС. Энергоблоки мощностью 250 Мвт на ТЭЦ с отопительной нагрузкой выполняют с промежуточным перегревом пара.

Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40-50%) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов . Доля тепла, отпускаемого основным энергетическим оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0,5-0,6). Подобным же образом можно покрывать пики тепловой (паровой) промышленной нагрузки (около 10-20% от максимальной) пиковыми паровыми

Находится основное и вспомогательное оборудование, при помощи которого ведется выработка электрической и тепловой энергии.

Основное оборудование ТЭЦ.

К основному оборудованию ТЭЦ, работающей по паровому циклу (цикл ) относится: , электрические генераторы и главные трансформаторы. Какие бывают паровые турбины на современных тепловых электростанциях, Вы можете почитать в статье — .

К основному оборудованию ТЭЦ, работающей по паро-газовому циклу относится: с воздушным компрессором, электрический генератор газовой турбины, котел-утилизатор, паровая турбина, главный трансформатор.

Основное оборудование — это оборудование, без которого невозможна работа ТЭЦ.

Вспомогательное оборудование ТЭЦ.

К вспомогательному оборудованию оборудованию ТЭЦ относятся различные механизмы и установки, обеспечивающие нормальную работу ТЭЦ. Это могут быть водоподготавливающие установки, установки пылеприготовления, системы шлако- и золоудаления, теплообменники, различные насосы и другие устройства.

Ремонт оборудования ТЭЦ.

Всё оборудование ТЭЦ должно ремонтироваться согласно установленному графику ремонтов. Ремонты, в зависимости от объема работ и количества времени делятся на: текущий ремонт, средний ремонт и капитальный ремонт. Самый большой по продолжительности и количеству ремонтных операций — капитальный. Более подробно о ремонтах на электростанциях Вы можете почитать в нашей статье — .


Во время работы, оборудование ТЭЦ должно подвергаться периодическому техническому обслуживанию (ТО), также согласно утвержденному графику ТО. Во время ТО проделывают, например, такие операции — продувка обмоток двигателей сжатым воздухом, перенабивка сальниковых уплотнений, регулировка зазоров и т.д.

Также во время работы, за оборудованием ТЭЦ должен вестись постоянный контроль со стороны эксплуатационного персонала. При обнаружении неисправности, должны быть предприняты меры по их устранению, если это не противоречит правилам безопасности и правилам технической эксплуатации. В противном случае оборудование останавливается и выводится в ремонт.

О том как оборудование на ТЭС выводится в ремонт, Вы можете посмотреть на видео, представленном ниже: